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Price Competition of Airports and its Effects on the Airline’s Network  

when the Short Haul Trip Demand Exists 

TERAJI, Yusuke 

 

Abstract: 

This paper deals with the price competition of airport operators and its effect on airlines’ networks 

when the short haul trip demand between the competitors exists. We extend the model of Teraji and 

Morimoto (2014) by introducing the passengers’ scheduling cost and the short haul trip demand. By 

using this model, we address the following two questions: i) how the price competition of airport 

operators affects the airline’s network choice; and ii) how the short haul trip demand affects the price 

competition and the consequent airline’s network choice. The results show that the price competition 

distorts the airline’s network choice in the following two ways: i) it causes the airline to choose a 

point-to-point network instead of a hub-spoke one; and ii) it forces the airline to choose an airport at 

a relatively small city as its hub. Furthermore, although the short haul trip demand loosens the price 

competition of airport operators, the point-to-point network inefficiently sustains at the equilibrium. 

Keywords: Airport Competition, Network Choice, Hub-Spoke, Point-to-Point, Short Haul Trip 

 

1. Introduction 

Airline deregulation and “Open Skies” agreements enhance the freedom of the 

airline’s network choice, which airport to be served. Observing these liberalizations in 

the aviation industry, Graham (2008) argues that the low airport charge is one of the key 

factors when airlines determine the served airports. As claimed by Graham (2008), this 

situation motivates airport operators to discount their airport charges; consequently, the 

airport operators face the more intense competition. For example, East Asian airports 

such as Narita (NRT), Kansai (KIX), Incheon (ICN), and Hong Kong (HKG) offer the 

discounts of the airport charges when airlines start the flight service along the new 
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routes, or increase the flight volume to the existing destinations. In case of KIX, the 

airport operator has started the discount program in 2012,
1
 and as a result of this 

program, KIX has experienced a significant growth in the traffic volume during the 

succeeding four years from 2012.
2
 This shows that operators can induce the airlines to 

form a favorable network for them by discounting their charges. 

By incorporating these facts, Teraji and Morimoto (2014) firstly develop a model that 

enables to analyze the interaction between the competition of airports and the airline’s 

network choice.
3
 They have shown that the airport in a relatively small city has an 

incentive to discount its airport charge more aggressively than the one in a large city. 

Consequently, the price competition of airports distorts the airline’s network by hubbing 

at the airport in a relatively small city. Their model, however, has the following 

shortcomings. First, they do not consider the short haul (or domestic) trip between the 

competitors’ airports, which may enhance the scale economy in providing the 

                                                        

 
1
 New Kansai International Airport Company (NKIAC) has been offering the following discount 

program. First, NKIAC cuts the landing fee for the international flights by 5 %. Furthermore, in 

order to motivate airlines to serve more flights, NKIAC discounts the landing fee for airlines which 

increase the number of flights or start the service at KIX. 
2
 From 2011 to 2015, KIX experienced 57 % increase in the number of flights, and 74 % increase in 

the number of departing passengers. 
3
 After the seminal works of Starr and Stinchcombe (1992) and Hendricks et al. (1995), several 

studies have focused on the carrier’s network choice (for example, Brueckner, 2004; Kawasaki, 

2008; Flores-Fillol, 2009). Brueckner (2004) analyzes the topic using three airports and a 

monopolistic carrier model. The carrier chooses a hub-spoke network when the fixed cost for a flight 

is high relative to the marginal cost for a seat and when passengers place a high value on flight 

frequency. Kawasaki (2008) extends the model of Bruechner (2004) by introducing the 

heterogeneity in value of time among passengers, leisure and business demands. Flores-Fillol (2009) 

extends the model by considering the duopoly case and shows that asymmetric equilibria may arise, 

namely one carrier chooses a point-to-point network while the other chooses a hub-spoke network. 
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connecting flights between the hub and spoke. In addition, the short haul trip may play 

the role to disturb the formation of the hub-spoke network. When setting the airport 

charges, operators face the problem whether to offer a discount to airlines. Once 

offering a discount, they can expand their airports’ network sizes through becoming the 

airlines’ hub. When the short haul trip demand is sufficiently large relative to the trip 

demands to newly connected airports, operators may have no incentives to discount. 

Consequently, there exists a possibility such that no hub-spoke network emerges at the 

equilibrium. Second, they ignore the scheduling cost of passengers, which might be 

significant under the hub-spoke network. Furthermore, this is one of the major sources 

for the scale economy of hubbing.  

By incorporating these two factors, this paper addresses the question such that i) how 

the price competition affects the airline’s network choice; and ii) how the existence of 

the short haul trip demand affects the behaviors of the airport operators and the 

consequent airline’s network. The rest of the paper is organized as follows: Section 2 

explains the model, and Section 3 describes the optimal network configuration, which is 

the benchmark for evaluating the equilibrium network configuration. In Section 4, we 

first summarize the network choice of airlines under the circumstance where positive 

airport charges are levied. This section also describes the equilibrium of the game 



4 

 

between airport operators, and derives the equilibrium network configuration as a result 

of the price competition of airport operators. In Section 5, we compare the two network 

configurations, the optimum and the equilibrium, and evaluate the welfare effect of the 

price competition of airport operators. More specifically, we explain how the price 

competition of airport operators distorts the airline’s network choice. In addition, we 

examine how the size of the short haul trip demand affects the two network 

configurations. Finally, Section 6 concludes. 

 

2. The Model 

2.1. The Basic Setting 

Suppose a country which is consisted from the two cities, Cities 1 and 2, and we call 

it Country 𝐻. The population of the country is normalized to unity, and without loss of 

generality, we assume that City 1 is larger than City 2. To sum up, since the total 

population of this country is unity, we denote by 𝑛 > 1 2⁄  the population of City 1, and 

that of City 2 is 1 − 𝑛. Each City 𝑖 has an airport, and we call the one at City 𝑖 

Airport 𝑖. By using the airport, residents in each city travel to the other city and a 

foreign country (hereafter, we name this foreign destination Country 𝐹). Figure 1 

summarizes the geography of the economy, and 𝑙𝑖𝑗 represents the distance between 𝑖 
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and 𝑗. We assume that the two airports are equidistant from Country 𝐹, and the 

distance to 𝐹 is normalized to unity (that is, 𝑙𝑖𝐹 = 1).
4
 The distance between the two 

airports, 1 and 2, is denoted by 𝑙12 = 𝑙 < 1. 

<<FIGURE 1: ABOUT HERE>> 

We assume that a single airline provides the domestic and the international flight 

services to the two airports, 1 and 2, of Country 𝐻, and hereafter, we simply call it 

Airline. The domestic flight is the service for travelers between the two cities, and is 

named service 𝐷. The international flight is the service for travelers between each City 

𝑖 and Country 𝐹, and is called service 𝐼. In addition, when providing service 𝐼, Airline 

has the two choices as in Figure 2. The left side of Figure 2 corresponds to the 

point-to-point network: that is, the direct flight service to Country 𝐹 is provided at the 

two airports. The right side of Figure 2 draws the hub-spoke network: namely, the direct 

flight to Country 𝐹 is served at one of the two airports. In this type of network, Airline 

also chooses its hub from the two airports. 

The difference among the three networks in Figure 2 is captured by whether Airline 

provides the direct international flight service to each of the two airports. Therefore, in 

order to express Airline’s network formally, we define by 𝛿𝑖 the binary variable which 

                                                        

 
4
 The asymmetric case is studied in Teraji and Morimoto (2014), and in order to reduce the 

complexity, in this paper, we limit our focus to the symmetric case. 
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shows Airline’s choice on the international service to Airport 𝑖. Namely, 𝛿𝑖 = 1 if 

Airline operates the direct international flights at Airport 𝑖; 𝛿𝑖 = 0, otherwise. The 

economy has the three types of agents, airport operators, Airline, and households. The 

sequence of decision among the three types of agents as follows. First, airport operators 

set their airport charges, and then Airline determines its network configuration, 

𝛅 = (𝛿1, 𝛿2), airfares and aircraft sizes. Finally, households decide whether to travel. 

Hereafter, we track back this sequence of the decisions. 

<<FIGURE 2: ABOUT HERE>> 

2.2. Households 

Households choose to travel by using service 𝑆 (𝑆 = 𝐼, 𝐷) flights unless the trip cost 

exceeds the reservation price, 𝑣𝑆. We assume that the reservation prices for the two 

services, 𝐼 and 𝐷, are identical, and we normalize the reservation price for each 

service to unity (𝑣𝐼 = 𝑣𝐷 = 1).
5
 The trip frequency also differs between the two 

services: households in each City 𝑖 travel to Country 𝐹 once while they travel to the 

other city 𝑗 𝑑̅ ≥ 1 times.  

The trip cost for each trip includes two components such as the airfare and the 

scheduling cost. The trip cost for domestic passengers, 𝑔𝐷, is given by: 

                                                        

 
5
 We limit our focuses to the case where Country 𝐹 is neighboring to Country 𝐻. Under this 

circumstance, the difference in the reservation price between the domestic and the international trips 

is negligible; consequently, this assumption has a rationale. 
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4

D Dg p
f

   (1) 

where 𝑝𝐷 and 𝑓12 are the airfare for service 𝐷 and the flight frequency between the 

two airports, 1 and 2, respectively. In Eq. (1), the second term of the RHS captures the 

scheduling cost.
6
 Each household in City 𝑖 travels to the other city, 𝑗, if 1 ≥ 𝑔𝐷. 

When this condition holds, the aggregate demand for service 𝐷, 𝑄𝐷, is 𝑑̅; otherwise, 

𝑄𝐷 = 0. 

In contrast, the trip cost for the international passengers from City 𝑖, 𝑔𝑖
𝐼, depends on 

the Airline’s network configuration. In other words, the trip cost is written as the 

function of 𝛿𝑖: that is, 𝑔𝑖
𝐼 = 𝑔𝑖

𝐼(𝛿𝑖). If 𝛿𝑖 = 1, 

  
1

1 ,
4

I

i i

iF

g p
f

   (2.1) 

while if 𝛿𝑖 = 0, 

  
12

1 1
0 .

4 4

I

i i

jF

g p
f f

    (2.2) 

In Eqs. (2), 𝑝𝑖  is the airfare for travelers from City 𝑖  to Country 𝐹  while 𝑓𝑖𝐹 

represents the flight frequency between 𝑖 and 𝐹. In case of 𝛿𝑖 = 0, travelers between 

City 𝑖 and Country 𝐹 must access to Airport 𝑗, at which the direct flights to Country 

𝐹 is operated; therefore, in Eq. (2.2), the scheduling cost for the flights between the two 

cities, 1 4𝑓12⁄ , is included. Each household decides to travel to Country 𝐹  if 

                                                        

 
6
 This expression of the average waiting time is based on the assumption that trip demand is 

uniformly distributed across the time of day. 
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1 ≥ 𝑔𝑖
𝐼(𝛿𝑖) . Under this circumstance, the aggregate demand between City 𝑖  and 

Country 𝐹, 𝑄𝑖𝐹, is equal to the population of City 𝑖, 𝑛𝑖; otherwise, 𝑄𝑖𝐹 = 0. 

The number of passengers on each route 𝑟 (𝑟 = 12, 1𝐹, 2𝐹), 𝑞𝑟 , however, may 

differ from the aggregate demand since it depends on the network choice by Airline, 

𝛅 = (𝛿1, 𝛿2): that is, 𝑞𝑟(𝛅). In case of 𝛅 = (1, 1), the number of passengers on each 

route is given by: 

    12 1,1  and 1,1 .D

iF iFq Q q Q   

If Airline chooses Airport 1 as its hub (that is, 𝛅 = (1, 0)): 

      12 2 1 2

1,2

1,0 ,  1,0 ,  and 1,0 0.D

F F iF F

i

q Q Q q Q q


     

Finally, for the case of hubbing at Airport 2 (namely, 𝛅 = (0, 1)), 

      12 1 1 2

1,2

0,1 ,  0,1 0,  and 0,1 .D

F F F iF

i

q Q Q q q Q


     

2.3. Airline 

Airline incurs the two types of costs when providing the service such as the operating 

cost of flights and the airport charge payments for each route 𝑟. The marginal flight 

operating cost on route 𝑟 is constant and given by 𝑐𝑙𝑟. That is, the marginal cost is 

proportional to the cruising distance. In sum, for route 𝑟, the operating cost is computed 

as 𝑐𝑙𝑟𝑓𝑟 where 𝑙12 = 𝑙 and 𝑙1𝐹 = 𝑙2𝐹 = 1. We assume that all the flights on route 𝑟 

are fully seated, and operated with the same capacity 𝑠𝑟. Therefore, the flight frequency 
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for route 𝑟 must suffice the following relation: 

    
 

.
r

r r r r

r

q
s f q f

s
  

δ
δ δ   (3) 

The airport charge is paid on a per passenger basis, and we denote by 𝑎𝑖 the charge at 

Airport 𝑖; the airport charge payments of routes 12 and 𝑖𝐹 are respectively computed 

as (𝑎1 + 𝑎2)𝑞12(𝛅) and 𝑎𝑖𝑞𝑖𝐹(𝛅). In summary, the Airline’s total cost, 𝐶(𝐬, 𝛅; 𝐚), is: 

      1 2 12

1,212

, ; ,i iF

i iF

cl c
C a a q a q

s s

  
      
   

s δ a δ δ   (4) 

where 𝐬 = (𝑠12, 𝑠1𝐹 , 𝑠2𝐹) and 𝐚 = (𝑎1, 𝑎2). 

Airline maximizes its profit by choosing the airfare, the size of aircraft, and its 

network configuration. Since Airline can exercise their market power when determining 

the airfare, Airline chooses the airfare so that it fully exploits the consumer’s gain, the 

reservation price net of the trip cost. According to these, the airfare for each service is 

computed as 𝑝𝑖
𝐼(𝐬, 𝛅)  and 𝑝𝐷(𝐬, 𝛅) .

7
 Under this pricing, 𝑄𝐷 = 𝑑̅  and 𝑄𝑖𝐹 = 𝑛𝑖 . 

Therefore, the traffic volume for three routes under the three alternative networks are 

computed as follows: 

    12 1,1  and 1,1 ,D

iF iF iq Q d q Q n     

      12 2 1 2

1,2

1,0 1 ,  1,0 1,  and 1,0 0,D

F F iF F

i

q Q Q n d q Q q


         

      12 1 1 2

1,2

0,1 ,  0,1 0,  and 0,1 1.D

F F F iF

i

q Q Q n d q q Q


        

                                                        

 
7
 The detailed expression is summarized in Appendix A. 
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By using these, the Airline’s profit, 𝜋(𝛅, 𝐬; 𝐚), is computed as: 

        
1,2

, ; , , , ; .I D D

i iF

i

p Q p Q C


  s δ a s δ s δ s δ a   (5) 

Given the airport charges, 𝐚, Airline chooses the aircraft size for each route under the 

three alternative networks. Formally, this is written as follows: 

  max , ; ,
s

s δ a  

The size of aircrafts for each route is derived as: 

 
   

   *

2

, ; 1
0 2  for 12,1 ,2 .

4

r r

r r r

r r

cl q
s cl q r F F

s s


      



s δ a δ
δ δ   (6) 

By using Eqs. (3) and (6), the flight frequency of route 𝑟 is computed as: 

  
 * 1

.
2

r

r

r

q
f

cl


δ
δ   

Substituting Eq. (6) into Eq. (5), the Airline’s profit for each of the three network is 

written as the function of airport charges, 𝐚: 

        1 1 21,0; 1 1 1 1 ,d a a a n d c l n d           a    (7.1) 

        2 1 20,1; 1 1 ,d a a a n d c l n d         a   (7.2) 

    
1,2 1,2

1,1; 1 .i i i

i i

d a n d c n ld
 

 
      

 
 a   (7.3) 

In addition, we assume that Airline provides the service for each market 𝑟 if the profit 

from the market 𝑟 is non-negative: that is, 𝜋𝑟(𝛅; 𝐚) ≥ 0.
8
 

2.4. Airport Operators 

                                                        

 
8
 The detailed expression for 𝜋𝑟(𝛅; 𝐚) is summarized in Appendix A. 
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Each airport is operated by a different private authority, and they maximize their 

airport charge revenue. The airport charge revenue, however, varies with the network 

choice of Airline, 𝛅. If Airline chooses to operate the international flights at a single 

airport, 𝑖, all the revenue from the international passengers flows into operator 𝑖’s 

revenue, and the revenues from domestic and connecting passengers are shared between 

the two operators. In contrast, if Airline chooses the point-to-point network, with respect 

to the international flights, each operator earns the revenue from its home city demand. 

Formally, the airport charge revenue is written as follows: 

      12 .i i iFR a q q   δ δ δ  

 

3. The Optimal Network Configuration 

This section describes the optimal network configuration. Since the demands for the 

two types of services are inelastic, the profit of Airline is equivalent to the social surplus. 

Furthermore, since there are no externalities at the airports such as the congestion, at the 

optimum, the airport charges should be zero. In summary, the social surplus under the 

network 𝛅 is computed as: 

       1,0 1,0; 1 1 1 ,SS d c l n d      Oa  

       0,1 0,1; 1 1 ,SS d c l n d     Oa  
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    
1,2

1,1 1,1; 1 ,i

i

SS d c n ld


 
     

 
O

a  

where 𝐚𝐎 = (0, 0) is the vector of the optimal airport charge. 

The optimal network configuration, 𝛅𝐎 , is characterized by the network which 

maximizes the social surplus. Since, under the assumption of the inelastic demand, the 

gross benefit is constant, the maximizing the social surplus is equivalent to minimizing 

the social cost of providing the flight services, 𝑆𝐶(𝛅): 

     1,0 1 1 ,SC c l n d     (8.1) 

     0,1 1 ,SC c l n d    (8.2) 

  
1,2

1,1 .i

i

SC c n ld


 
  

 
  (8.3) 

Hereafter, we derive the optimal network configuration, 𝛅𝐎, by comparing the social 

costs, Eqs. (8). Let us start with the comparison of hubbing at Airports 1 (𝛅 = (1,0)) 

and 2 (𝛅 = (0,1)): 

      1,0 0,1 1 0.SC SC cl n d n d        (9) 

The RHS of Eq. (9) is the cost differential in the connecting flights along route 12. 

Since 𝑛 > 1 2⁄ , the sign of Eq. (9) is always negative. This is summarized in Lemma 1: 

Lemma 1 

When the two airports are equidistant from Country 𝐹, hubbing at Airport 2 (that is, 

𝛅 = (0,1)) is always socially inferior to hubbing at Airport 1 (𝛅 = (1,0)). 
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Lemma 1 states that hubbing at the airport in the larger city always minimizes the social 

cost compared to hubbing at the airport in the smaller city. In our setting, the hub-spoke 

network generates the flight operating cost for connecting passengers along route 12. 

Since this cost is increasing in the number of connecting passengers, hubbing at Airport 

1 always reduces this additional cost compared to choosing Airport 2 as the Airline’s 

hub. 

Now, we derive the optimal network configuration 𝛅𝐎. In comparison of the social 

costs between hubbing at Airport 1 (𝛅 = (1,0)) and point-to-point (𝛅 = (1,1)), the 

point-to-point network becomes the optimal network configuration if: 

      1,0 1,1 1 1 0.i

i

SC SC c n cl n d d
 

        
 

   (10) 

Solving Eq. (10) for √𝑙, we obtain the threshold 𝑙𝑂, and by using this threshold, we 

obtain Proposition 1, which summarizes the optimal network configuration, 𝛅𝐎. 

Proposition 1 

The optimal network configuration, 𝛅𝐎, is summarized as follows: 

 
(1,1)  if ,

(1,0)  if ,

O

O

l l

l l

 
 



Oδ  (11.1) 

where 

 
1

.
1

iO i
n

l
n d d




  


  (11.2) 
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Proposition 1 states that the optimal network configuration falls into hubbing at 

Airport 1 if the two airports in Country 𝐻 are sufficiently close (that is, √𝑙 ≤ 𝑙𝑂). This 

is because the scale economy in gathering all the international passengers to a single 

airport dominates the additional cost for serving the connecting flights between Airports 

1 and 2. As the distance between the two airports increases, the optimal network 

configuration changes from the hub-spoke to the point-to-point since the additional cost 

for connecting passengers outweighs the scale economy of hubbing. Hereafter, in order 

to simplify the analysis, we consider the case where all the routes generate the surplus. 

Let us denote by 𝑆𝑆𝑟(𝛅)  the surplus of market 𝑟  under network 𝛅 : then it is 

computed by evaluating 𝜋𝑟(𝛅; 𝐚) at 𝐚 = 𝐚𝐎 = (0,0). Namely,
9
 

    ; 0.r rSS  O
δ δ a  

 

4. The Equilibrium 

This section derives the equilibrium network configuration as a result of the game 

among Airline and the two airport operators. This section tracks back this sequence of 

decisions. Namely, Subsection 4.1 deals with the Airline’s decision, and Subsection 4.2 

explains how we discretize the two airports’ strategies. In addition, we summarize the 

                                                        

 
9
 Appendix B summarizes the range of parameter values. 
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relationship between the two operators’ choices and the network formation by Airline. 

In Subsection 4.3, by using the results in Subsection 4.2, we describe the Nash 

equilibrium airport charge, and the equilibrium network configuration. 

4.1. The Airline’s Choices 

Given the airport charges, 𝐚 = (𝑎1, 𝑎2), Airline chooses its network, 𝛅∗(𝐚), in order 

to maximize its profit. Formally, this problem is stated as: 

    arg max , .*

δ
δ a δ a  

When deriving 𝛅∗(𝐚), we compare the profits under the three alternative network 

configurations: 

        1 1 21,0; 1 1 1 1 ,d a a a n d c l n d           a     (12.1) 

        2 1 20,1; 1 1 ,d a a a n d c l n d         a  (12.2) 

    
1,2 1,2

1,1; 1 .i i i

i i

d a n d c n ld
 

 
      

 
 a  (12.3) 

For example, when 𝛅∗(𝐚) = (1,1), the following must hold: 

        1

1,2

1
1,1; 1,0; 1 1 1 0,

2 2
i

i

c
a n n l n d d 



 
             

 
a a  (13.1) 

      2

1,2

1
1,1; 0,1; 1 0.

2 2
i

i

c
a n n l n d d 



 
           

 
a a  (13.2) 

Prior to deriving the condition such that Airline prefers the point-to-point network to 

the hub-spoke, we define the two variables, 𝑋𝐼 and 𝑋𝑖
𝐷, as follows: 
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1,2

1 and .I D

i i i

i

X n X n d d


       

These two variables capture the Airline’s tradeoff when changing its network from 

point-to-point to hubbing at Airport 𝑗. Namely, 𝑋𝐼 captures the scale economy for 

service 𝐼, the cost reduction of service 𝐼 through gathering all the demand to a single 

airport. In contrast, 𝑋𝑖
𝐷 is the incremental cost for service 𝐷, the additional cost for the 

operation along route 12 due to the connecting. By using these expressions and solving 

Eqs. (13) for 𝑎𝑖, we obtain: 

 
 

 for 1,2, .
2

I D

j

i i

j

c X l X
a h i j i

n

 
      (14) 

In addition to the condition (14), the two airport operators must assure that Airline earns 

the non-negative profits from each of the three markets 𝑟  ( 𝑟 = 1𝐹, 2𝐹, 12 ): 

𝜋𝑟(1,1; 𝐚) ≥ 0. Exercising the similar procedures for the other two networks, we obtain 

Lemma 2, which summarizes the Airline’s network choice. 

Lemma 2 

Suppose that 𝜋𝑟(𝛿) ≥ 0 for ∀𝛿 and 𝑟. Given the airport charges, 𝐚, the network 

choice by Airline, 𝛅∗(𝐚), is derived as: i) 𝛅∗(𝐚) = (1, 1) if 𝑎1 > ℎ1 and 𝑎2 > ℎ2; ii) 

𝛅∗(𝐚) = (1,0) if 𝑎1 ≤ min{ℎ1, 𝑓1(𝑎2)}; iii) 𝛅∗(𝐚) = (0, 1)  if 𝑎2 ≤ min{ℎ2, 𝑓2(𝑎1)} 

where 
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  
 

.
2

D D

j ij i

i j

j j

cl X Xa n
f a

n n


   (15) 

Proof: Eq. (14) summarizes the condition where 𝛅∗(𝐚) = (1,1) is realized. In case of 

𝛅∗(𝐚) = (1,0), according to Eq. (14), 𝜋(1,0; 𝐚) ≥ 𝜋(1,1; 𝐚) if 𝑎1 ≤ ℎ1. Furthermore, 

according to the comparison of the profits under the two alternative hub-spoke 

networks, 

        1 2

1
1,0; 0,1; 1 1 0.

2 2

cl
a n a n n d n d            a a  

Solving this for 𝑎1, 

  
 
 

2 12
1 1 2 .

1 2 1

D Dcl X Xa n
a f a

n n


  

 
 

In sum, 𝛅∗(𝐚) = (1,0) if 𝑎1 ≤ min{ℎ1, 𝑓1(𝑎2)}. For the case of 𝛅∗(𝐚) = (0,1), the 

similar discussion is applied, and the sufficient condition is characterized by 𝑎2 ≤

min{ℎ2, 𝑓2(𝑎1)}. 

QED 

In order to understand the statement of Lemma 2, we plot 𝑓𝑖(𝑎𝑗) and ℎ𝑖 in (𝑎1, 𝑎2) 

space in Figure 3. It shows that as the airport charges increase, the Airline’s network 

changes from the hub-spoke to the point-to-point. In addition, for 0 < 𝑎1 < 𝑓1(0) in 

Figure 3, Airline chooses Airport 1 as its hub even when operator 2 sets the airport 

charge equal to zero. This indicates the advantage of Airport 1; namely, since City 1 has 
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the larger demand, Airline chooses Airport 1 as its hub in order to reduce the cost for 

operating connecting flights even when operator 2 offers the free airport use. 

<<FIGURE 3: ABOUT HERE>> 

By using Lemma 2, we limit our focus on the case where Airline always has the three 

alternative choices: that is, 

 
 

1 .
2

I D

j

i

i j

c X l Xc
h

n n

 
     (16.1) 

In addition, we set the assumption for the domestic route: 

 1 1 1 .
1

cl c c

d n n

   
             

  (16.2) 

This condition assures that Airline provides the domestic flight service even when the 

two operators exploit the profits from the international flight services at their airports.
10

 

4.2. The Airports Operator’ Choices and Airline’s Network 

The two operators simultaneously determine their airport charges. By using the 

network choice, 𝛅∗(𝐚), in Lemma 2, the revenue of operator 𝑖 is computed as: 

           12, .i i j i i iFR a a R a q q   
 

* * *
δ a δ a δ a  

In order to simplify the analysis, as in Teraji and Morimoto (2014), we limit our focus 

on the case where the strategy of each airport operator is discrete; that is, the discount 

                                                        

 
10

 Further details of the parameter ranges are summarized in Appendix B. 



19 

 

(represented by the superscript 𝑑 ) or the exploiting strategy (represented by the 

superscript 𝑒). Formally, the problem of operator 𝑖 is expressed as: 

 
 

 
,

max , ,
e d

i i i

i i j
a a a

R a a


 

where 𝑎𝑖
𝑒 and 𝑎𝑖

𝑑 respectively represent the airport charges under the exploiting and 

the discount strategies. Under the assumptions (16), the Airline’s network falls into the 

point-to-point if the two airport operators choose to exploit the Airline’s profit. The 

exploiting strategy, 𝑎𝑖
𝑒, is computed as: 

  1,1; 1 0 1 .e e e

iF i i i i

i i

c c
a n a a

n n


 
        

 

 (17) 

In contrast, the discount strategy, 𝑎𝑖
𝑑, does not necessarily imply that operator 𝑖 

discounts its airport charge to zero. This is because, once choosing the exploiting 

strategy, operator 𝑖 can earn the revenue: 

      , 1 .e e

i i j i i i i

i

c
R a a a n d n d R

n

 
       

 
 

This implies that when discounting, the revenue earned under the exploiting strategy, 

𝑅̅𝑖, becomes the reference point. That is, operator 𝑖 discounts its airport charge as long 

as the revenue under the discount strategy is at least equal to 𝑅̅𝑖. Let us denote by 𝑎𝑖 

the lower bound of the discount strategy: it is computed as, 

    1 1 .
1

e i
i ij i i

j i

n d c
a n d a n d a

n d n

 
           

 (18) 
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Since 𝑛 ≥ 1 2⁄ , note that the lower bound of the discount of operator 2 is always lower 

than that of operator 1: 

 
1 2

1
1 1 .

2 1 1

n d c n d c
a a

n d n n d n

     
                 

 

The two operators know that Airline has the three alternative network choices, and 

that the network falls into the point-to-point (𝛅∗(𝐚𝐞) = (1,1)) once they play the 

exploiting strategy. Therefore, each operator recognizes its competitor’s reservation 

revenue, 𝑅̅𝑖, and the lower bound of the discount airport charge, 𝑎𝑖. Furthermore, as in 

Lemma 2, operator 𝑖 takes into account the fact such that Airline sets Airport 𝑖 as its 

hub if operator 𝑖 chooses its airport charge as 𝑎𝑖 = min{𝑓𝑖(𝑎𝑗), ℎ𝑖}. Together with 

these information, the discount strategy is characterized by: 

   min , .d

ji i ia f a h  (19) 

In comparison of 𝑓𝑖(𝑎𝑗) and ℎ𝑖, the discount strategy of operator 𝑖 is characterized 

as in Lemma 3. 

Lemma 3 

The discount strategy of operator 𝑖, 𝑎𝑖
𝑑, is characterized as: 

 
 

,

,

         if ,

 if ,

d

i i jd

i d

ji i j

h l l
a

f a l l

 
 



 

where 
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 , .
I

i jd

i j D D
i i

n aX
l

X cX

 
   
 

  

Proof: According to the comparison of 𝑓𝑖(𝑎𝑖) and ℎ𝑖, 𝑎𝑖
𝑑 = ℎ𝑖 if: 

 

 
   

,

0
2 2 2 2

2
.

I DD D D I
jj ii j i j i

i j i

j j j j j j

I
i j d

i jD D
i i

c X l Xcl X Xn a n a cl X cX
f a h

n n n n n n

n aX
l l

X cX

 
       

 
     

 

  

QED 

<<TABLE 1: ABOUT HERE>> 

By using the two strategies characterized by Eqs. (17) and (19), we can summarize 

the payoff matrix in Table 1. Based on Table 1, we derive the equilibrium airport charge, 

and the equilibrium network configuration. In Table 1, when 𝐚 = (𝑎1
𝑒 , 𝑎2

𝑒) , the 

equilibrium network configuration falls into the point-to-point: that is, 𝛅∗(𝑎1
𝑒 , 𝑎2

𝑒) =

(1,1). In contrast, if one of the two operators play the discount strategy while the other 

plays the exploiting, the equilibrium network configuration falls into the hub-spoke. 

Airline chooses the airport whose operator plays the discount strategy as its hub: that is, 

𝛅∗(𝑎1
𝑑 , 𝑎2

𝑒) = (1,0)  and 𝛅∗(𝑎1
𝑒 , 𝑎2

𝑑) = (0,1) . However, the Airline’s network is 

indeterminate if both operators play the discount strategy. Therefore, we start with 
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showing the Airline’s network choice in case of 𝐚 = (𝑎1
𝑑, 𝑎2

𝑑): 

Lemma 4 

Suppose that the two operators play the discount strategy (that is, 𝐚 = (𝑎1
𝑑, 𝑎2

𝑑)). In 

such case, the network choice of Airline is summarized as follows: 

  

   
 

 

1 2

1,2 2,1

2,1 1,2

1,0  if  min ,  or ,

0,1  if   or ,

1,1  otherwise

,

.

d d

d dd d

l l l l l

l l l la a l

  



   



*
δ  

where 

 
 

 
2 1

1 2

2 1
.

D D

na n a
l

c X X

   



  

Proof: see Appendix C. 

4.3. The Equilibrium Network Configuration 

By using Table 1 and the results summarized in Subsection 4.2, we derive the 

equilibrium network configuration. This subsection is organized as follows: first, we 

describe the best response of the two operators, and then we derive the Nash 

equilibrium airport charges, 𝐚∗ = (𝑎1
∗ , 𝑎2

∗) . Finally, substituting 𝐚∗ = (𝑎1
∗ , 𝑎2

∗)  into 

𝛅∗(𝐚), the equilibrium network configuration is derived. First, we consider the best 

response of operator 𝑖 against the competitor 𝑗’s exploiting strategy. In such case, the 

network falls into hubbing at Airport 𝑖 if operator 𝑖 plays the discount strategy while 



23 

 

it becomes the point-to-point if it plays the exploiting. Therefore, operator 𝑖 plays the 

discount strategy if: 

        , , 1 0.d e e e d e

i i j i i i i j i iR a a R a a a n d a n d        

Since the second term of the LHS equals to 𝑅𝑖, this relation is rewritten as: 

         , , , 1 0.d e e e d e d

ii i j i i i i i j i i jR a a R a a R a a R a a n d         (20) 

This indicates that the discount strategy becomes operator 𝑖’s the best response against 

𝑗’s exploiting strategy if 𝑎𝑖
𝑑 ≥ 𝑎𝑖. 

In case where operator 𝑗 plays the discount strategy, the difference of operator 𝑖’s 

revenue varies with the Airline’s network choice 𝛅∗(𝑎1
𝑑, 𝑎2

𝑑) summarized in Lemma 4. 

If 𝛅∗(𝑎1
𝑑 , 𝑎2

𝑑) results in hubbing at the competitor’s airport, the revenue differential is 

computed as: 

       , , .d d e e d e

i i j i i i i i iR a a R a a a a n d     (21) 

By the assumption such that 𝑎𝑖
𝑒 > ℎ𝑖  and the definition of 𝑎𝑖

𝑑  (that is, 𝑎𝑖
𝑑 ≡

min{ℎ𝑖, 𝑓𝑖(𝑎𝑗)}), the sign of Eq. (21) is definitely negative; therefore, in such situation, 

operator 𝑖’s best response is the exploiting. In contrast, if 𝛅∗(𝑎1
𝑑 , 𝑎2

𝑑) is hubbing at 

Airport 𝑖, the revenue differential is: 

         , , , 1 .d d e d d d d

ii i j i i i i i j i i jR a a R a a R a a R a a n d         

Therefore, in this case, as in Eq. (20), the best response of operator 𝑖 against the 
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competitor’s discount strategy is determined according to the relation between 𝑎𝑖
𝑑 and 

𝑎𝑖. 

By comparing 𝑎𝑖
𝑑  and 𝑎𝑖 , we obtain operator 𝑖 ’s best responses against the 

competitor 𝑗’s discount and the exploiting strategies as in Lemma 5. 

Lemma 5 

i) Suppose that the competitor 𝑗 plays the exploiting strategy. Airport 𝑖’s best response, 

𝑎𝑖
𝑟(𝑎𝑗

𝑒), is derived as follows: 

  1 2 1 ,r e ea a a  (22.1) 

   2 1,2

2 1

2

        if ,

        otherwise.

d d

r e

e

a l l
a a

a

 
 


 (22.2) 

ii) Suppose that the competitor 𝑗 plays the discount strategy. Airport 𝑖’s best response 

is always the exploiting strategy: namely, 𝑎𝑖
𝑟(𝑎𝑗

𝑑) = 𝑎𝑖
𝑒. 

Proof: see Appendix C. 

Lemma 5 shows that operator 1 never plays the discount strategy whereas operator 2 

discounts its airport charge if the distance is close. This is interpreted as follows. When 

the distance between the two airports is close, the additional operating cost for 

connecting passengers is less significant; consequently, Airline attaches the weight on 

forming the hub-spoke network rather than choosing which airport to be its hub. This 

implies that, in order to become the Airline’s hub, the operators must discount their 
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airport charges more. In such situation, operator 1 chooses to enjoy exploiting the 

Airline’s profit since it has the large demand from its home city. In contrast, due to the 

small demand, the discount strategy augments the payoff of operator 2; therefore, 

operator 2 has an incentive to play the discount strategy. 

However, the importance of the additional operating cost increases as the distance 

between the two airports increases. In such case, for each operator 𝑖, in order to attract 

Airline to choose Airport 𝑖 as its hub, it is necessary to offer a significant discount. 

Hence, compared to the exploiting strategy, the discount strategy becomes less 

profitable; consequently, both operators play the exploiting strategy. By using Lemma 5, 

we obtain the equilibrium airport charge, 𝐚∗, and the consequent equilibrium network 

configuration, 𝛅∗(𝐚∗), as in Proposition 2. 

Proposition 2 

The equilibrium airport charges, 𝐚∗, are derived as follows: 

 
 

 

1 2 1,2

1 2 1,2

,  if ,

,  if  .

e d d

e e d

a a l l

a a l l

 
 



*
a   (23.1) 

Consequently, the equilibrium network is determined as: 

  
 

 

1,2

1,2

0,1  if ,

1,1  if  .

d

d

l l

l l

 
 



* *
δ a   (23.2) 

Proof: First, Lemma 5 shows that operator 1’s dominant strategy is the exploiting (that 
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is, 𝑎1
𝑟(𝑎2) = 𝑎1

𝑒). Eq. (22.2) characterizes the operator 2’s best response against the 

operator 1’s exploiting. According to these, the equilibrium airport charges, 𝐚∗, are 

computed as: 

 
 

 

1 2 1,2

1 2 1,2

,  if ,

,  if  .

e d d

e e d

a a l l

a a l l

 
 



*
a  

Therefore, the equilibrium network configuration, 𝛅∗(𝐚∗) falls into hubbing at Airport 

2 if √𝑙 ≤ 𝑙1,2
𝑑  whereas the point-to-point emerges at the equilibrium if √𝑙 > 𝑙1,2

𝑑 . 

QED 

Proposition 2 shows that, as the distance between the two airports, 𝑙, increases, the 

network configuration changes from the hub-spoke to the point-to-point. Figure 4 plots 

the threshold in Proposition 2 against the population of City 1, 𝑛, in case of 𝑑̅ = 1. In 

this figure, for √𝑙 > 𝑙1,2
𝑑 , the equilibrium network falls into the point-to-point while, for 

√𝑙 ≤ 𝑙1,2
𝑑 , the hub-spoke network emerges at the equilibrium. In case of √𝑙 > 𝑙1,2

𝑑 , the 

equilibrium characterized by 𝐚∗ = (𝑎1
𝑒 , 𝑎2

𝑒)  and 𝛅∗(𝐚∗) = (1,1) . This is because, 

under the private operation, for √𝑙 > 𝑙1,2
𝑑 , the additional operating cost for connecting 

passengers outweighs the scale economy in hubbing. In this situation, the two operators 

have to discount more if they want to become the Airline’s hub; consequently, they play 

the exploiting strategy and Airline chooses the point-to-point network. 

<<FIGURE 4: ABOUT HERE>> 
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For √𝑙 ≤ 𝑙1,2
𝑑 , since operator 2 plays the discount strategy, Airline always chooses 

Airport 2 as its hub. As explained in Lemma 5, the difference in the choices of the two 

operators is attributed to the one in the gains from the hubbing. Let us denote by Δ𝑖 the 

ratio of the traffic volume at Airport 𝑖 between the hubbing and the point-to-point; 

namely, 

 
1

 for 1,2, .
j

i

i

n d
i j i

n d

 
   


  (24) 

Since 1 2⁄ < 𝑛 < 1 and 𝑑̅ ≥ 1, 

 1 2

2 1
.

1

n d n d

n d n d

   
    

  
  

It is obvious that operator 2 always experiences the larger increase in the passengers 

from becoming the Airline’s hub compared to operator 1. In other words, operator 2 

receives the larger gain from discounting the airport charges than operator 1 does. For 

√𝑙 ≤ 𝑙1,2
𝑑 , the operator 2’s gain from the discount outweighs the loss; consequently, 

operator 2 plays the discount strategy. In contrast, since the gain from becoming the 

Airline’s hub is small, operator 1 chooses never to play the discount strategy. As a result, 

for √𝑙 ≤ 𝑙1,2
𝑑 , hubbing at Airport 2 becomes the equilibrium network configuration. 

 

5. Discussion 

This section compares the two types of the network configuration, the optimum and 
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the equilibrium. It is shown how the private operation of airports and consequent airport 

competition distort the Airline’s network choice. Specifically, we evaluate the welfare 

effects of the price competition and consequent equilibrium network by comparing the 

thresholds summarized in Propositions 1 and 2. In this section, we also deal with how 

the results differ from those obtained in Teraji and Morimoto (2014). This study extends 

the model of Teraji and Morimoto (2014) in the two aspects, the formulation of the scale 

economy and the existence of the short haul trip demand. We conduct the comparative 

statics with respect to the size of the short haul demand. This section is organized as 

follows: in Subsection 5.1, we compare the optimal and the equilibrium thresholds at 

which the network changes from the hub-spoke to the point-to-point. Then, Subsection 

5.2 reports the effect of the short haul trip demand on the two network configurations. 

5.1. Equilibrium vs. Optimum 

As in Proposition 2, at the equilibrium, the threshold, 𝑙1,2
𝑑 , divides the domains of the 

hub-spoke and the point-to-point whereas 𝑙𝑂 characterizes the boundary of the two 

domains at the optimum. Proposition 3 compares the two thresholds and summarizes the 

inefficiencies of the equilibrium network: 

Proposition 3 

At the equilibrium, it is more difficult for Airline to choose the hub-spoke network 
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compared to at the optimum; namely, 𝑙𝑂 > 𝑙1,2
𝑑 . Furthermore, at the equilibrium, the 

efficient hub-spoke network never emerges. 

Proof: see Appendix D. 

Figures 5 plots the two thresholds, 𝑙𝑂 and 𝑙1,2
𝑑 , in (𝑛, √𝑙) space under in case of 

𝑑̅ = 1. It shows that the optimal network configuration is always the hub-spoke since 

𝑙𝑂 > 1. In contrast, at the equilibrium, the network configuration still depends on both 

the distance between the two cities, 𝑙, and the population of City 1, 𝑛. Namely, as the 

population of City 1 increases, the equilibrium network falls into hubbing at Airport 2 

more easily. However, the two cities are sufficiently distant, the competition results in 

the point-to-point. 

<<FIGURE 5: ABOUT HERE>> 

Proposition 3 and Figure 5 report the two inefficiencies of the equilibrium network 

configuration 𝛅∗(𝐚∗) . First, for min{𝑙𝑂 , 1} ≥ √𝑙 > 𝑙1,2
𝑑 , the game among the two 

operators and Airline results in the formation of the point-to-point network although the 

hub-spork network is the most efficient. As in Teraji and Morimoto (2014), this is due to 

the positive airport charge. Namely, since our setting has no source of the externalities 

such as airport congestion, the optimal airport charge is equal to zero. At the equilibrium, 

however, the private operation of airports imposes the positive airport charge on Airline. 
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In such situation, other than the flight operating cost for the connecting passengers, 

Airline must incur the airport charge payment for the connecting passengers. Therefore, 

even when the scale economy of hubbing dominates the flight operating cost for the 

connecting passengers, Airline wants to avoid the airport charge payment at the hub; 

consequently, the point-to-point network is more easily chosen at the equilibrium. 

Second, for 𝑙1,2
𝑑 ≥ √𝑙, although the forms of the network are identical between the 

optimum and the equilibrium, the equilibrium hub location is inefficient: at the 

equilibrium, Airport 2 always becomes the Airline’s hub. As in Teraji and Morimoto 

(2014), this is explained by the difference in the attitude toward the airport competition. 

Namely, due to the smaller home demand, the reservation revenue of operator 2 

becomes smaller than the one of operator 1. This implies that since the lower bound of 

the discount, 𝑎2, becomes too low, operator 1 must discount more in order to become 

the Airline’s hub. Consequently, for operator 1, the loss of the discount dominates the 

gain from becoming the hub, and operator 1 never plays the discount strategy. In 

contrast, since the gain from the discount dominates its loss, operator 2 has an incentive 

to play the discount strategy if the additional operating cost for connecting becomes 

negligible (that is, the two airports are sufficiently close). This indicates that, in our 

setting, in order to become the Airline’s hub, only operator 2 offers the discount in the 
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airport charge. Therefore, the inefficient network, hubbing at Airport 2, emerges at the 

equilibrium. 

5.2. The Effect of the Short Haul Trip Demand 

In Teraji and Morimoto (2014), it is shown that the price competition of airports 

induces the formation of the inefficient network. Proposition 3 confirms that, the similar 

mechanisms, the difference in the attitude toward the price competition and the market 

power of the two operators, make Airline choose the inefficient network. Our study 

extends the model of Teraji and Morimoto (2014) by introducing the scheduling cost of 

the passengers and the short haul trip demand. As discussed in Subsection 5.1, our 

formulation of the scale economy, the scheduling cost of passengers, generates the 

qualitatively similar results in Teraji and Morimoto (2014), in which the scale economy 

is captured by the reduction in the fixed cost. 

This subsection focuses on the effect of the other extension; the short haul trip 

demand, 𝑑̅. In order to clarify its effect, we conduct the comparative statics of the 

thresholds, 𝑙𝑂 and 𝑙1,2
𝑑 , with respect to 𝑑̅. The results are summarized in Proposition 4. 

Proposition 4 

As the short haul trip demand, 𝑑̅ , increases, the difference between 𝑙𝑂  and 𝑙1,2
𝑑  

expands. Namely, ∂𝑙𝑂 𝜕𝑑̅⁄ > ∂𝑙1,2
𝑑 𝜕𝑑̅⁄ . 



32 

 

Proof: see Appendix D. 

Proposition 4 states that, as the market size of the short haul trip expands, the 

point-to-point network becomes hard to realize at the optimum whereas the equilibrium 

network falls into the point-to-point more easily. 

This result is interpreted as follows. At the optimum, the expansion of the short haul 

trip demand reduces the additional operating cost for connecting passengers, 𝑋2
𝐷, while 

the scale economy of hubbing, 𝑋𝐼, remains constant; therefore, since the scale economy 

dominates the additional cost, the social planner chooses the hub-spoke network more 

easily. In contrast, for the airport operators, the expansion of the short haul trip demand 

rises the reservation revenue, 𝑅̅𝑖, and consequently, the lower bound of the discount 

charge, 𝑎𝑖: indeed, 
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This implies that the expansion of the short haul trip demand increases the loss when 

playing the discount strategy whereas the gain from the discount, the revenue from the 

connecting passengers, is constant. Therefore, the two operators are less motivated to 

play the discount strategy, and at the equilibrium, the point-to-point network sustains 
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more easily. 

 

6. Conclusion 

In this paper, we extend the model of Teraji and Morimoto (2014) by incorporating 

the short haul trips and the passenger’s scheduling cost. By using this model, we address 

the problems such as: i) how the price competition affects the airline’s network choice; 

and ii) how the existence of the short haul trip demand affects the behaviors of the 

airport operators and the consequent airline’s network. As in Teraji and Morimoto 

(2014), at the optimum, without any locational advantages, airports at relatively small 

cities never become the airline’s hub. 

Conversely, at the equilibrium, airports at relatively small cities always become the 

airline’s hub even if they have no locational advantage. This is because operators of 

airports at small cities are willing to discount their airport charge since they receive 

relatively large gains from connecting flights from their spoke nodes. Furthermore, the 

introduction of the short haul trip between the two cities loosens the price competition 

of the airport operators. This is because, due to the short haul trip demand between the 

competitors, the airport operators experience the significant loss due to the discount; 

hence, they become less motivated to offer the discount in the airport charges to the 
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airline. As a result, the equilibrium network falls into the point-to-point more easily. 

In reality, although a discount program offered by an airport operator is one of the 

key determinants when airlines choose the airports to be served, the number of links 

which the airport have is also an important factor. In order to compare these two factors, 

the price competition and the difference in the link size, on the economic welfare, it is 

necessary to develop a model in which asymmetry in the airports is represented by the 

number of links. Under this setting, in some situation, operators of the airports with the 

less links may have no incentives to discount, and consequently, airlines choose the 

airports with more links as their hubs. Furthermore, this implies that the price 

competition of operators generates no distortion on the network choice by airlines. 
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 Appendix A: The Airfares under the Three Alternative Network Configurations 

Since each service market is under the monopoly, Airline can fully exploits the 

consumer’s surplus by determining the airfare, 𝑝𝑖
𝐼  and 𝑝𝐷 . First note that the 

scheduling cost depends on the aircraft size, 𝐬, as in Eq. (3). Furthermore, for service 

𝐷, the number of passengers on the route 12 depends on the Airline’s network choice, 𝛅. 

Therefore, the trip costs for service 𝐷  and for service 𝐼  from Airport 𝑖  are 

respectively expressed as 𝑔𝐷(𝐬, 𝛅) and 𝑔𝑖
𝐼(𝐬, 𝛅). By taking into account this, the 

airfares of the two services, 𝑝𝑖
𝐼(𝐬, 𝛅) and 𝑝𝐷(𝐬, 𝛅), are derived according to the 

equation, 1 = 𝑔𝑖
𝐼(𝐬, 𝛅) and 1 = 𝑔𝐷(𝐬, 𝛅) as follows: 
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By using Eqs. (6) and (A.1), the non-negative profit condition for each route 𝑟 is 

summarized as follows. In case of hubbing at Airport 1 (that is, 𝛅 = (1,0)): 
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For hubbing at Airport 2 (𝛅 = (0,1)), 
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Under the point-to-point network (𝛅 = (1,1)) , 
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Appendix B: Ranges of Parameter Values 

The parameter values must suffice the following relations: 
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The first condition, (B.1.1), requests that the direct flight service for Route 2𝐹 always 

generates the non-negative surplus. Once this condition is satisfied, the positive surplus 

is always assured for the direct flight service for 1𝐹. By solving Eq. (B.1.1), the 

sufficient condition is computed as: 𝑛 ≤ 1 − 𝑐. 

The second condition, (B.1.2), implies that Airline can earn the non-negative profit 

from providing the domestic flight service even when the two operators set their airport 

charges to exploit the Airline’s profit from the direct international flight service. In order 

to derive the sufficient condition where Eq. (B.1.2) is met, we take the following 

strategy. First, we consider the case where the LHS of Eq. (B.1.2) takes the minimum 

value, and derive the range of the parameter values in which the minimum value 

suffices the condition (B.1.2). After that, even when the minimum value of the LHS 

does not suffice the condition, we compute the range of the parameter values in which 

Eq. (B.1.2) is satisfied. 

Looking at Eq. (B.1.2), the bracket term takes the maximum at 𝑛 = 1 2⁄ , and since 



40 

 

0 < 𝑙 ≤ 1, the second term is at the peak when 𝑙 = 1. Therefore, Eq. (B.1.2) is 

minimized at (𝑙, 𝑛) = (1, 1 2⁄ ): that is, the minimum value is computed as 
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The sign of Eq. (B.2) is non-negative if: 

 
1

4 2 0 ,
8

c c      

Solving (B.2) for 𝑑̅, 

  
 

2

2 2
4 2 0 .

2 4 2

c c
c d

d c

    



  

In addition, since 𝑑̅ ≥ 1, 
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In summary, the first case of the parameter sets is characterized by 0 ≤ 𝑙 ≤ 1, 1 ≤ 𝑑̅, 

1 2⁄ < 𝑛 < 1 − 𝑐, and (9 + 4√2) 49⁄ ≤ 𝑐 < 1 2⁄ . 

In the case where 𝑐 < (9 + 4√2) 49⁄ , the parameters do not suffice the condition 

(B.1.2) when 𝑑̅ = 𝑙 = 1. Therefore, solving Eq. (B.1.2) for 𝑙, 
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Other than this condition, the bracket term of the LHS should be positive: that is, 
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The threshold, the RHS of (B.3), is decreasing in 𝑛 for 1 2⁄ < 𝑛, and, as long as 

1 8⁄ < 𝑐, for 1 2⁄ < 𝑛 < 1 − 𝑐, Eq. (B.3) is always satisfied. In other words, for 

1 8⁄ < 𝑐 < (9 + 4√2) 49⁄ , other parameters must satisfy the following: 0 ≤ 𝑙 ≤ 𝑙, 

1 ≤ 𝑑, and 1 2⁄ < 𝑛 < 1 − 𝑐. For 𝑐 ≤ 1 8⁄ , the exploiting airport charge becomes too 

high, and Airline no longer provides the domestic service between the two airports 1 

and 2; therefore, 𝑄𝐷 = 0. 

Summarizing the discussion above, we state Lemma B, which summarizes the ranges 

of the parameter values: 

Lemma B 

As long as 1 8⁄ ≤ 𝑐 ≤ 1 2⁄ , the domestic flight service generates the non-negative 

profit if: 
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However, for 𝑐 < 1 8⁄ , no domestic flights are served (that is, 𝑄𝐷 = 0). 
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Appendix C: Proofs of Lemmas in Section 4 

We start with summarizing the relationship of the two thresholds, 𝑙1,2
𝑑  and 𝑙2,1

𝑑 : 

Lemma C1 

When the domestic trip is absent (𝑑̅ = 0), for 1 2⁄ < 𝑛 < 1 − 𝑐, 𝑙1,2
𝑑 ≥ 𝑙2,1

𝑑 . 

Proof: In the case where 𝑑̅ = 0, 𝑙𝑖,𝑗
𝑑  is expressed as: 
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Eqs. (C.1) show that 𝑙𝑖,𝑗
𝑑 |

𝑑=0
 is obviously increasing in 𝑐; that is, they are maximized 

at 𝑐 = 1 2⁄  and minimized at 𝑐 = 1 8⁄ . Also note that as in Lemma B, the population 

of City 1, 𝑛, must lie in the domain, 1 2⁄ ≤ 𝑛 ≤ 1 − 𝑐. In case of 𝑛 = 1 2⁄ , 
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 with respect to 𝑛 and evaluating at 𝑛 = 1 2⁄ , 
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Observing Eqs. (C.2), the RHS of Eq. (C.2.1) is decreasing in 𝑐 whereas that of (C.2.2) 

is increasing in 𝑐. Therefore, the signs of Eqs. (C.2) are determined by evaluating 
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(C.2.1) at 𝑐 = 1 2⁄ ; 
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This implies that, around 𝑛 = 1 2⁄ , 𝑙1,2
𝑑 |

𝑑=0
 is increasing in 𝑛  while 𝑙2,1

𝑑 |
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 is 

decreasing in 𝑛. 

In case of 𝑛 = 1 − 𝑐, 
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Figure C1 below plots the values of Eqs. (C.4) against 𝑐, and it is shown that, for 

1 8⁄ ≤ 𝑐 ≤ 1 2⁄ , 𝑙1,2
𝑑 |

𝑑=0,𝑛=1−𝑐
≥ 𝑙2,1

𝑑 |
𝑑=0,𝑛=1−𝑐

. Together with Eqs. (C.1), (C.2), and 

(C.3), we can conclude that when 𝑑̅ = 0, 𝑙1,2
𝑑 ≥ 𝑙2,1

𝑑 . 

<<Figure C1: ABOUT HERE>> 

QED 

Furthermore, Lemma C2 summarizes how the presence of the domestic trip demand, 

𝑄𝐷 = 𝑑̅ ≥ 1, affects the relation between the two thresholds, 𝑙1,2
𝑑  and 𝑙2,1

𝑑 . 

Lemma C2 

When the domestic trip is present ( 𝑑̅ ≥ 1 ), for 1 2⁄ < 𝑛 < 1 − 𝑐  and 𝑐 ≥ 1 8⁄ , 

𝑙1,2
𝑑 ≥ 𝑙2,1

𝑑 . 
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Proof: First evaluating 𝑙𝑖,𝑗
𝑑  at 𝑛 = 1 2⁄ , 
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Observing at Eq. (C.5), at 𝑛 = 1 2⁄ , 𝑙1,2
𝑑 = 𝑙2,1

𝑑 . Differentiating 𝑙𝑖,𝑗
𝑑  with respect to 𝑛 

and evaluating them at 𝑛 = 1 2⁄ , we have: 
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1 1
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.
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 
  (C.6) 

Furthermore, as in Figure C2, the value of (C.6) is increasing in 𝑑̅, and is always 

positive for 𝑑̅ ≥ 1. 

<<Figure C2: ABOUT HERE>> 

At 𝑛 = 1 − 𝑐, 
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In comparison of Eqs. (C.7), 
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This is increasing in 𝑑̅, and as in Lemma C.1, in case of 𝑑̅ = 0, its sign is positive; 

therefore, for 𝑄𝐷 = 𝑑̅ ≥ 1, 𝜆1,2

𝑑
> 𝜆2,1

𝑑
. According to Figure C2, and Eqs (C.5), (C.6) 

and (C.8), when the short haul trip is present, 𝑙1,2
𝑑 ≥ 𝑙2,1

𝑑 . 

QED 

By using Lemmas C2 and 3, we consider the network configuration under 𝐚 =

(𝑎1
𝑑 , 𝑎2

𝑑). 

Lemma 4 

Suppose that the two operators play the discount strategy (that is, 𝐚 = (𝑎1
𝑑, 𝑎2

𝑑)). In 

such case, the network choice of Airline is summarized as follows: 
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Proof: When the two operators play the discount strategy, according to Lemma 2, 

Airline chooses Airport 𝑖 as its hub if: 

   min , .d d

i i i ja h f a   (C.9) 

First, we focus on the case where 𝑎𝑖
𝑑 = 𝑓(𝑎𝑗) . The competitor 𝑗  has the two 
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alternative strategies: namely, 𝑎𝑗
𝑑 = 𝑓𝑗(𝑎𝑖) and 𝑎𝑗

𝑑 = ℎ𝑗 . Suppose that the competitor’s 

discount airport charge is given by ℎ𝑗  (that is, 𝑎𝑗
𝑑 = ℎ𝑗). In this case, through the 

calculation, 𝑓𝑖(𝑎𝑗
𝑑) = 𝑓𝑖(ℎ𝑗) = ℎ𝑖 ; therefore, the condition (C.9) is automatically 

satisfied when (𝑎𝑖
𝑑 , 𝑎𝑗

𝑑) = (𝑓(𝑎𝑗), ℎ𝑗). In case of 𝑎𝑗
𝑑 = 𝑓𝑗(𝑎𝑖), Airline chooses Airport 

𝑖  as its hub if 𝑎𝑖
𝑑 = 𝑓𝑖(𝑎𝑗) ≤ 𝑓𝑖(𝑎𝑗

𝑑) = 𝑓𝑖 (𝑓𝑗(𝑎𝑖)) . Provided 𝑋1
𝐷 − 𝑋2

𝐷 > 0 , for 

operator 1, this condition is computed as: 
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(C.10.1) 

For operator 2, 
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Then, 𝑓1(𝑎2) ≤ min{ℎ1, 𝑓1(𝑎2
𝑑)}  if √𝑙 ≤ min{𝑙1,2

𝑑 , 𝑙} . For Airport 2, 𝑓2(𝑎1) ≤

min{ℎ2, 𝑓2(𝑎1
𝑑)} if 𝑙 ≤ √𝑙 ≤ 𝑙2,1

𝑑 . 

In case of 𝑎𝑖
𝑑 = ℎ𝑖, first, we focus on the case where 𝑎𝑗

𝑑 = 𝑓𝑗(𝑎𝑖). In such situation, 

it is necessary to check the condition such that 𝑎𝑖
𝑑 = ℎ𝑖 ≤ 𝑓𝑖(𝑎𝑗

𝑑) = 𝑓𝑖 (𝑓𝑗(𝑎𝑖)). For the 

two airport operators, 
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In the second case where the competitor sets 𝑎𝑗
𝑑 = ℎ𝑗 , since 𝑓𝑖(𝑎𝑗

𝑑) = 𝑓𝑖(ℎ𝑗) = ℎ𝑖, the 

condition (C.9) is automatically satisfied. Hence, ℎ1 ≤ min{ℎ1, 𝑓1(𝑎2
𝑑)}  if √𝑙 ≥

𝑙2,1
𝑑 and ℎ2 ≤ min{ℎ2, 𝑓2(𝑎1

𝑑)} if √𝑙 ≥ 𝑙1,2
𝑑 . In summary, when both operators play the 

discount strategy, Airline chooses hubbing at Airport 1 if √𝑙 ≤ min{𝑙1,2
𝑑 , 𝑙} or if 

𝑙2,1
𝑑 ≤ √𝑙 ; hubbing at Airport 2 if 𝑙 ≤ √𝑙 ≤ 𝑙2,1

𝑑  or if 𝑙1,2
𝑑 ≤ √𝑙 ; point-to-point, 

otherwise. 

QED 

Lemma 5 summarizes the two operators’ best responses against the competitors’ two 

strategies. 

Lemma 5 

i) Suppose that the competitor 𝑗 plays the exploiting strategy. Airport 𝑖’s best response, 

𝑎𝑖
𝑟(𝑎𝑗

𝑒), is derived as follows: 

  1 2 1 ,r e ea a a  (22.1) 
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 (22.2) 

ii) Suppose that the competitor 𝑗 plays the discount strategy. Airport 𝑖’s best response 

is always the exploiting strategy: namely, 𝑎𝑖
𝑟(𝑎𝑗

𝑑) = 𝑎𝑖
𝑒. 
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Proof: We start with the statement i). As summarized in Eq. (20), the best response is 

determined according to the relation between 𝑎𝑖
𝑑 and 𝑎𝑖. First, let us consider the case 

where 𝑎𝑖
𝑑 = ℎ𝑖. According to the comparison, the discount strategy becomes the best 

response against 𝑎𝑗
𝑒 if: 
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In addition, as in Lemma 3, 𝑎𝑖
𝑑 = ℎ𝑖 if √𝑙 > 𝑙𝑖,𝑗

𝑑 : therefore, 

   , , if .r e d d

i j i i j j ia a h l l l     (C.12) 

According to Lemma C2, however, Eq. (C.12) is satisfied only when 𝑖 = 2: namely, 

operator 2 has a choice to play 𝑎2
𝑑 = ℎ2 as the discount strategy whereas operator 1 has 

no incentives to play 𝑎1
𝑑 = ℎ1. 

According to Lemma 3, 𝑎𝑖
𝑑 = 𝑓𝑖(𝑎𝑗) if √𝑙 ≤ 𝑙𝑖,𝑗

𝑑 . In addition, each operator plays 

the discount strategy if 𝑓𝑖(𝑎𝑗) ≥ 𝑎𝑖. For operator 1,  
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For operator 2, 
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By using Lemma 3, 

    21 2 1 1,2 if ,r e da a f a l l l     (C.13.1) 
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      12 1 2 2,1 if min , .r e da a f a l l l    (C.13.2) 

In comparison of 𝑙1,2
𝑑  and 𝑙, according to Lemma C2, 
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That is, the sufficient condition for 𝑎1
𝑟(𝑎2

𝑒) = 𝑓1(𝑎2) is never satisfied. Therefore, each 

operator’s best response against its competitor’s exploiting is summarized as: 

  1 2 1 ,r e ea a a   (C.15.1) 
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  (C.15.2) 

When the competitor plays the discount strategy, as discussed, Airport 𝑖 plays the 

exploiting strategy if one of the following two conditions is satisfied. First, since the 

discount strategy aims at attracting Airline, operator 𝑖 plays the exploiting strategy if 

Airline chooses the competitor’s airport as its hub or the point-to-point network: that is, 

𝑎𝑖
𝑟(𝑎𝑗

𝑑) = 𝑎𝑖
𝑒. Second, even when Airline chooses its airport as its hub, operator 𝑖 

prefers the exploiting strategy if the revenue from this strategy exceeds the one from 

discounting. In the first condition, according to Lemma 4, this is the case for operator 1 

if min{𝑙1,2
𝑑 , 𝑙} < √𝑙 < 𝑙2,1

𝑑 , and for operator 2 if √𝑙 < 𝑙 or 𝑙2,1
𝑑 < √𝑙 < 𝑙1,2

𝑑 . 

Focusing on the second condition, as in Eq. (C.15.1), it is obvious that operator 1 has 

no incentives to play the discount strategy (that is, 𝑎1
𝑑 < 𝑎1) since the revenue under 
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the exploiting always dominates the one under the discount. In case of operator 2, 

Lemma 4 shows that Airline chooses Airport 2 as its hub for 𝑙 ≤ √𝑙 ≤ 𝑙2,1
𝑑  or if 

𝑙1,2
𝑑 ≤ √𝑙. From Eq. (C.14) and Lemma C2, since 𝑙 > 𝑙1,2

𝑑 ≥ 𝑙2,1
𝑑 , the first situation, 

𝑙 ≤ √𝑙 ≤ 𝑙2,1
𝑑 , is never realized. Under the second situation, 𝑙1,2

𝑑 ≤ √𝑙, according to Eq. 

(C.15.2), operator 2 always plays the exploiting strategy (that is, 𝑎2
𝑑 < 𝑎2). In summary, 

the exploiting strategy is always the best response against the competitor’s discount 

strategy: that is, 𝑎𝑖
𝑟(𝑎𝑗

𝑑) = 𝑎𝑖
𝑒. 

QED 
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Appendix D: Proofs of Propositions in Section 5 

First, we compare the two thresholds, 𝑙𝑂  and 𝑙1,2
𝑑 , which are summarized in 

Proposition 3. 

Proposition 3 

At the equilibrium, it is more difficult for Airline to choose the hub-spoke network 

compared to at the optimum; namely, 𝑙𝑂 > 𝑙1,2
𝑑 . Furthermore, at the equilibrium, the 

efficient hub-spoke network never emerges. 

Proof: For the first statement, the two thresholds are 
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X cX
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Since 𝑋2
𝐷 < 𝑋1

𝐷, 𝑋𝐼 𝑋1
𝐷⁄ < 𝑋𝐼 𝑋2

𝐷⁄ . In addition, 𝑎2 ≥ 0. These two facts automatically 

imply 𝑙𝑂 > 𝑙1,2
𝑑 . For the second statement, as in Propositions 1 and 2, although hubbing 

at Airport 1 is more efficient than hubbing at airport 2, at the equilibrium, only Airport 2 

becomes the hub. 

QED 

By differentiating the two thresholds, we have Proposition 4. 

Proposition 4 
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As the short haul trip demand, 𝑑̅ , increases, the difference between 𝑙𝑂  and 𝑙1,2
𝑑  

expands. Namely, ∂𝑙𝑂 𝜕𝑑̅⁄ > ∂𝑙1,2
𝑑 𝜕𝑑̅⁄ . 

Proof: Differentiating  𝑙𝑂 and 𝑙1,2
𝑑  with respect to 𝑑̅, 
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 (D.2) 

First, since 𝑛 + 𝑑̅ > 1 − 𝑛 + 𝑑̅ > 𝑑̅ , 𝜕𝑙𝑂 𝜕𝑑̅⁄ > 0 . Now, let us consider the 

comparison of Eq. (D.1) and the first term of Eq. (D.2). According to Proposition 3, 

𝑙1,2
𝑑 < 𝑙𝑂. The relation between the two is determined by that of the rest. Through the 

calculation, we have: 
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Hence, 
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Furthermore, the second term is computed as: 
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In summary, we always have ∂𝑙𝑂 𝜕𝑑̅⁄ > ∂𝑙1,2
𝑑 𝜕𝑑̅⁄ . 

QED 
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Figure 1: The Geography of the Economy 
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Figure 2: The Airline’s Network Choice 

 

Figure 3: The Airline’s Network Choice 

 

Figure 4: The Equilibrium Network Configurations (𝒄 = 𝟏 𝟒⁄ , 𝒅̅ = 𝟏) 
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Figure 5: The Equilibrium vs. the Optimum (𝒄 = 𝟏 𝟒⁄ , 𝒅̅ = 𝟏) 
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Figure C1: The Marginal Cost and its Effect on the Two Thresholds (𝒏 = 𝟏 −

𝒄, 𝒅̅ = 𝟎) 

 

 

Figure C2: The Domestic Trip and its Effect on the Partial Derivative 𝝏𝒍𝟏,𝟐
𝒅 𝝏𝒏⁄  

(𝒏 = 𝟏 𝟐⁄ , 𝒄 = 𝟏 𝟒⁄ ) 

 

 

Table 1: Payoff Matrix 

Airport 2 

Airport 1 
Exploiting Strategy Discount Strategy 

Exploiting Strategy 𝑅1(𝑎1
𝑒 , 𝑎2

𝑒), 𝑅2(𝑎2
𝑒 , 𝑎1

𝑒) 𝑅1(𝑎1
𝑒 , 𝑎2

𝑑), 𝑅2(𝑎2
𝑑, 𝑎1

𝑒) 

Discount Strategy 𝑅1(𝑎1
𝑑 , 𝑎2

𝑒), 𝑅2(𝑎2
𝑒 , 𝑎1

𝑑) 𝑅1(𝑎1
𝑑 , 𝑎2

𝑑), 𝑅2(𝑎2
𝑑, 𝑎1

𝑑) 
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